RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2017 FIRST YEAR [BATCH 2017-20] **CHEMISTRY** (General) Date : 15/12/2017 Paper : I Time : 11 am – 1 pm Full Marks: 50 (Use a separate Answer book for each group) Group – A UNIT-I Answer any one of the following: 1×13 Applying Bohr's theory evaluate the expression of energy of the electron in the 3rd Bohr orbit. 1. a) What is the implication of its negative sign? 2 + 1b) An element (A = 235, Z = 92) emits one α and two β particles. What are the values of A and Z for the new element. 2 Distinguish between nuclear fission and nuclear fusion with examples. (One example for c) 2+2each). What do you mean by half life of a radioactive element? It takes 356 minutes for the d) disintegration of 90% of ¹⁸F atom. Calculate the half life of ¹⁸F. 2+2The ${}^{16}_{8}$ O isotope is chemically identical with the ${}^{18}_{8}$ O isotope why? 2. a) 2 Define electron affinity of an atom. The first electron affinity of oxygen is positive, but the b) second electron affinity is negative. Explain. 1+2c) Calculate the radius of Li^{2+} ions in the 3^{rd} excited state. 2 d) Give the four values of quantum number that describes the electron in 3d orbitals. 2 What is meant by the term ionization energy? "Successive ionization potentials have e) progressively higher values" - justify. 2+2**UNIT-II** Answer **any one** of the following: 1×12 a) Consider a pseudo 1st order reaction $CH_3COOEt + H_2O \xrightarrow{H^+} CH_3COOH + EtOH$ 3. The reaction seems to be a 3^{rd} order reaction but actually, it is not. Why is it so? Also show that the reaction rate constant is doubled, if the acid concentration is doubled. 3 At 25°C, the equivalent conductance at infinite dilution of NaOH, NH₄Cl and NaCl are 248.1, b)

- b) At 25°C, the equivalent conductance at infinite dilution of NaOH, NH₄Cl and NaCl are 248.1, 149,7 and 126.4 ohm⁻¹ cm², respectively. Calculate the same at infinite dilution for NH₄OH, defining Kohtransch's law.
- c) Explain specific conductance of 0.1 (N) HCl > 0.1 (N) CH₃COOH.
- d) Deduce the integrated rate equation of the following second order reaction where the initial concentrations of the two reactants are same.
 3+2

3

1

3 3

$A + B \rightarrow \text{Product}$

Show that time for half decomposition of this type of second order reaction is dependent on the initial concentration of the reactant.

- 4. a) In the Arrhenius equation for a certain reaction the value of A (frequency factor) and E_a (activation energy) are $4 \times 10^{13} \text{ s}^{-1}$ and 98.6 kJ mole⁻¹ respectively. If the reaction is first order then at what temperature will its half-life period be 10 min.
 - b) How equivalent conductance vary with concentration both for strong and weak electrolyte.

		(11) Kohlrausch's law is applicable at infinite dilution.		
	d)	Define steady state approximation and why is it important.	2	
		<u>Group – B</u> LINIT-I		
An	swer	any one of the following:	1×12	
5.	a)	Define most probable velocity and root mean square velocity.	3	
	b)	With increasing temperature viscosity of liquid decreases whereas viscosity of gas increases – explain.	2	
	c)	Write the Maxwell's speed distribution equation and draw the distribution curve for a gas at two different temperatures.	2	
	d)	(i) Define the principle of equipartition of energy. (ii) Calculate the average energy of 1 mole of H_2 and He gas in terms of KT by applying the equipartition principle.	1+4	
6.	a)	State the principle of corresponding state. Derive an expression interconnecting P_r, V_r and T_r for a van der Waals gas.	1+3	
	b)	If a glass capillary is dipped into water and mercury separately, what would you observe? Explain.	2	
	c)	Define surface tension and viscosity coefficient of a liquid and mention their SI unit.	2+1	
	d)	Explain the principle of measuring viscosity coefficient of a liquid by using Ostwald Viscometer.	3	
		UNIT-II		
Answer any one of the following:				
7.	a)	Deduce the expression for maximum work done when ' n ' mole ideal gas expands reversibly and isothermally.	3	

In a set of two Parallel reactions, the one with greater rate constant will be faster than

2+2

3

3

3

3

3

- b) What do you understand by the terms C_p and C_v . Derive their relationship for an ideal gas. 2+2
- c) Prove that for ideal gas in adiabatic reversible process $TV^{\gamma-1}$ = constant.
- d) One mole of an ideal gas undergoes adiabatic free expansion from 1 liter to 10 liters. Calculate *w* and ΔU .

8. a) What do you mean by extensive property and intensive property? Identify the following as an extensive or intensive property: 2+2

- (i) temperature (ii) density (iii) enthalpy (iv) molar heat capacity
- b) 1.4 g of water vapour expand reversibly and adiabatically from an initial temperature of 27° C and volume of 1 lit to a final volume of 4 lit. Calculate the final pressure. ($\gamma = 1.3$)
- c) State and explain Hess's law of constant heat summation.
- d) Given the following heat of reaction at 25° C.

c) Explain the followings:

other.

(i)

$C_5H_8(g) + 8O_2(g) = 5CO_2(g) + 4H_2O(I)$	$\Delta_r H^o = -3120 \text{ kJ mol}^{-1}$
$C(\text{graphite}) + O_2(g) = CO_2(g)$	$\Delta_r H^o = -393.7 \text{ kJ mol}^{-1}$
$H_2(g) + \frac{1}{2}O_2(g) = H_2O(I)$	$\Delta_r H^o = -285.7 \text{ kJ mol}^{-1}$

Calculate the $\Delta_r H^o$ for the heat of formation of $C_5 H_8(g)$ [5C (graphite) + 4 $H_2(g) = C_5 H_8(g)$]